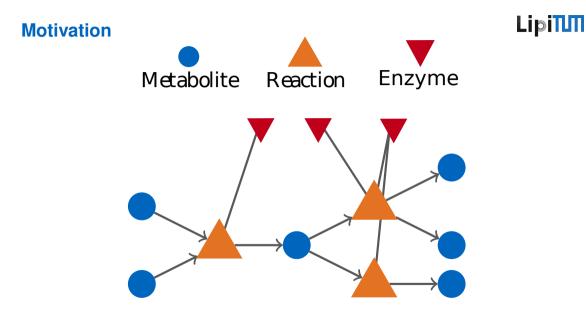
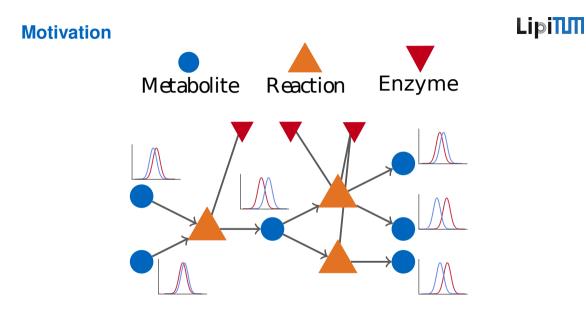
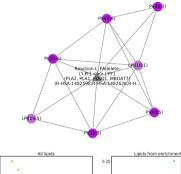

Reaction-Centered Metabolic Network Analysis


4th Munich Metabolomics Meeting


Nikolai Köhler

bidt Junior Research Group LipiTUM Chair of Experimental Bioinformatics TUM School of Life Sciences Technical University of Munich

13th October 2022



\Rightarrow What can we learn about reaction activity?

Motivation

Munich Metabolomics Meeting| Nikolai Köhler | 13th October

Lipid network and moiety analysis for revealing enzymatic dysregulation and mechanistic alterations from lipidomics data

Tim D. Rose, Shikolai Köhler, Lisa Falk, Lucie Klischat, Olga E. Lazareva, Josch K. Pauling doi: https://doi.org/10.1101/2022.02.04.479101

This article is a preprint and has not been certified by peer review [what does this mean?].

	2		V	0	ľ	씉	0	ľ	00	0	ľ	Ģ	0	1	B	0		y	28	
--	---	--	---	---	---	---	---	---	----	---	---	---	---	---	---	---	--	---	----	--

Abstract Full Text Info/His

story Metrics

Preview PDF

LipiIII

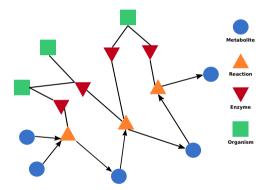
Pre-print on bioRxiv

exbio.wzw.tum.de/linex2

Objective from a Computational View

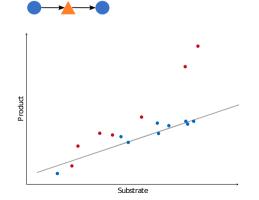
(Good) Approximation of reaction values can help to disentangle observations

- ⇒ Utilize information on reaction activity from *changes* in metabolic abundances
- ⇒ Use *complementary* information to separate disentangle metabolite- from reaction effects


Database Resource

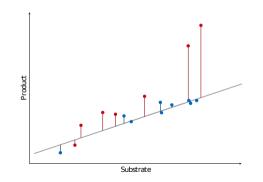
_

Mammalian	Microbial
Reactome	KEGG AGOBA
Recon 3D KEGG	AGORA

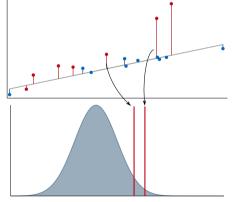


Goal: approximate activity change for each reaction in disease samples **Assumption**: product abundances are dependent on substrate abundances

Goal: approximate activity change for each reaction in disease samples **Assumption**: product abundances are dependent on substrate abundances

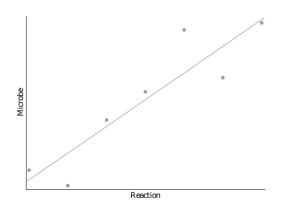

⇒ Linear model to estimate dependence

Goal: approximate activity change for each reaction in disease samples **Assumption**: product abundances are dependent on substrate abundances

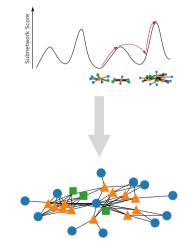

- ⇒ Linear model to estimate dependence
- Explained variance to estimate "goodness of fit"

Goal: approximate activity change for each reaction in disease samples **Assumption**: product abundances are dependent on substrate abundances

- \Rightarrow Linear model to estimate dependence
- Explained variance to estimate "goodness of fit"
- ⇒ one "reaction value" per reaction for *each* disease sample

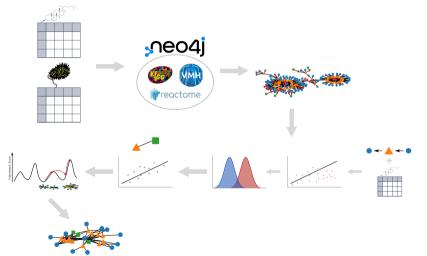

Multi-omics Associations

Idea:


association \Rightarrow abundance changes when reaction does

"Computational implementation": correlation coefficient

Subnetwork Identification

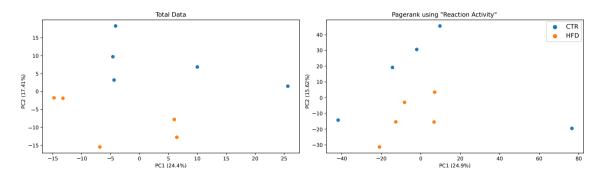

- Simple reporting
 - Reaction ranking
 - Association ranking
- Advanced reporting: find sets of *metabolically* connected reactions for which activity changes *and* microbial associations are high
- ⇒ Simulated-annealing supported local search
 - find connected reactions changing the most
 - Optionally: find parts of metabolism with the highest microbe-reaction association

Putting it all together...

Preliminary Results

In-vivo Experiment by Zimmermann-Kogadeeva et al.¹

Mouse groups


- Microbiome: germ-free, defined culture
- Diet: control, high-fat
- \sim 50,000 measure features
- \sim 4,000 identified metabolites
- additional metagenomics data

¹Zimmermann-Kogadeeva et al., "Multiomics and quantitative modelling disentangle diet, host, and microbiota contributions to the host metabolome", bioRxiv 2022

Preliminary Results

In-vivo Experiment by Zimmermann-Kogadeeva et al.¹

¹Zimmermann-Kogadeeva et al., "Multiomics and quantitative modelling disentangle diet, host, and microbiota contributions to the host metabolome", bioRxiv 2022

Acknowledgments

- Dr. Josch K. Pauling
- Vivian Würf
- Olga Lazareva
- Lucie Klischat
- Dr. Markus List
- Monica Matchado

Ein Institut der Bayerischen Akademie der Wissenschaften

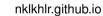
LipiIII

Contact

Lab

gitlab.lrz.de/lipitum-projects

twitter.com/lipitum



Personal

github.com/nklkhlr

nikolai.koehler@tum.de

Thank You!